Internal RNA Replication Elements are Prevalent in Tombusviridae

نویسندگان

  • Beth L. Nicholson
  • Pui Kei K. Lee
  • K. A. White
چکیده

Internal replication elements (IREs) are RNA structures that are present at internal positions in the genomes of different types of plus-strand RNA viruses. Members of the genus Tombusvirus (family Tombusviridae) contain an IRE within the polymerase coding region of their genomes and this RNA element participates in both genome targeting to sites of replication and replicase complex assembly. Here we propose that other members of the virus family Tombusviridae also possess comparable IREs. Through sequence and structural analyses, candidate IREs in several genera of this family were identified, including aureusviruses, necroviruses, carmoviruses, and pelarspoviruses. The results from subsequent mutational analysis of selected proposed IREs were consistent with a critical role for these structures in viral genome accumulation during infections. Our study supports the existence of IREs in several genera in Tombusviridae and points to previously unappreciated similarities in genome replication strategies between members of this virus family.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an Internal RNA Element Essential for Replication and Translational Enhancement of Tobacco Necrosis Virus AC

Different regulatory elements function are involved in plant virus gene expression and replication by long-distance RNA-RNA interactions. A cap-independent functional element of the Barley yellow dwarf virus (BYDV) - like translational enhancer (BTE) is present in Tobacco necrosis virus A (TNV-A), a Necrovirus member in the Tombusviridae family. In this paper, an RNA stretch flanking the 5' pro...

متن کامل

Importance of sequence and structural elements within a viral replication repressor.

Efficient replication of plus-strand RNA viruses requires a 3' proximal core promoter and an increasingly diverse inventory of supporting elements such as enhancers, repressors, and 5' terminal sequences. While core promoters have been well characterized, much less is known about structure-functional relationships of these supporting elements. Members of the genus Carmovirus family Tombusvirida...

متن کامل

Multifaceted Regulation of Translational Readthrough by RNA Replication Elements in a Tombusvirus

Translational readthrough of stop codons by ribosomes is a recoding event used by a variety of viruses, including plus-strand RNA tombusviruses. Translation of the viral RNA-dependent RNA polymerase (RdRp) in tombusviruses is mediated using this strategy and we have investigated this process using a variety of in vitro and in vivo approaches. Our results indicate that readthrough generating the...

متن کامل

Specific binding of tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication.

The mechanism of template selection for genome replication in plus-strand RNA viruses is poorly understood. Using the prototypical tombusvirus, Tomato bushy stunt virus (TBSV), we show that recombinant p33 replicase protein binds specifically to an internal replication element (IRE) located within the p92 RNA-dependent RNA polymerase coding region of the viral genome. Specific binding of p33 to...

متن کامل

Analysis of the subcellular targeting of the smaller replicase protein of Pelargonium flower break virus.

Replication of all positive RNA viruses occurs in association with intracellular membranes. In many cases, the mechanism of membrane targeting is unknown and there appears to be no correlation between virus phylogeny and the membrane systems recruited for replication. Pelargonium flower break virus (PFBV, genus Carmovirus, family Tombusviridae) encodes two proteins, p27 and its read-through pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012